

ALP MICROPROCESSORS & INTERFACING

ASSEMBLY LANGUAGE PROGRAMS

A. About ALP:

Assembly languages are a family of low-level languages for programming

computers, microprocessors, microcontrollers, and other (usually) integrated circuits.

They implement a symbolic representation of the numeric machine codes and other

constants needed to program a particular CPU architecture. This representation is usually

defined by the hardware manufacturer, and is based on abbreviations (called mnemonics)

that help the programmer remember individual instructions, registers, etc. An assembly

language is thus specific to certain physical or virtual computer architecture (as opposed

to most high-level languages, which are usually portable).

A utility program called an assembler is used to translate assembly language

statements into the target computer's machine code. The assembler performs a more or

less isomorphic translation (a one-to-one mapping) from mnemonic statements into

machine instructions and data. This is in contrast with high-level languages, in which a

single statement generally results in many machine instructions.

Many sophisticated assemblers offer additional mechanisms to facilitate program

development, control the assembly process, and aid debugging. In particular, most

modern assemblers include a macro facility (described below), and are called macro

assemblers.

Assemblers are generally simpler to write than compilers for high-level

languages, and have been available since the 1950s. Modern assemblers, especially for

RISC based architectures, such as MIPS, Sun SPARC, HP PA-RISC and x86(-64),

optimize instruction scheduling to exploit the CPU pipeline efficiently.

There are two types of assemblers based on how many passes through the source

are needed to produce the executable program. One pass assemblers go through the

source code once and assumes that all symbols will be defined before any instruction that

http://en.wikipedia.org/wiki/Low-level_language
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Mnemonic#Assembly_mnemonics
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Utility_program
http://en.wikipedia.org/wiki/Isomorphism
http://en.wikipedia.org/wiki/Mnemonic
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Macro_(computer_science)
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/MIPS_architecture
http://en.wikipedia.org/wiki/SPARC
http://en.wikipedia.org/wiki/PA-RISC
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Instruction_scheduling
http://en.wikipedia.org/wiki/CPU_pipeline

ALP MICROPROCESSORS & INTERFACING

references them. Two pass assemblers (and multi-pass assemblers) create a table with all

unresolved symbols in the first pass, then use the 2nd pass to resolve these addresses. The

advantage in one pass assemblers is speed - which is not as important as it once was with

advances in computer speed and capabilities. The advantage of the two-pass assembler is

that symbols can be defined anywhere in the program source. As a result, the program

can be defined in a more logical and meaningful way. This makes two-pass assembler

programs easier to read and maintain.

More sophisticated high-level assemblers provide language abstractions such as:

 Advanced control structures

 High-level procedure/function declarations and invocations

 High-level abstract data types, including structures/records, unions, classes, and

sets

 Sophisticated macro processing

 Object-Oriented features such as encapsulation, polymorphism, inheritance,

interfaces.

B. BASIC ELEMENTS

Any Assembly language consists of 3 types of instruction statements which are used

to define the program operations:

1. Opcode mnemonics

2. Data sections

3. Assembly directives

1. Opcode mnemonics

Instructions (statements) in assembly language are generally very simple, unlike those in

high-level languages. Generally, an opcode is a symbolic name for a single executable

machine language instruction, and there is at least one opcode mnemonic defined for each

machine language instruction. Each instruction typically consists of an operation or

http://en.wikipedia.org/wiki/High-level_assembler
http://en.wikipedia.org/wiki/High-level_programming_language

ALP MICROPROCESSORS & INTERFACING

opcode plus zero or more operands. Most instructions refer to a single value, or a pair of

values. Operands can be either immediate (typically one byte values, coded in the

instruction itself) or the addresses of data located elsewhere in storage. This is determined

by the underlying processor architecture: the assembler merely reflects how this

architecture works.

2. Data sections

There are instructions used to define data elements to hold data and variables. They

define what type of data, length and alignment of data. These instructions can also define

whether the data is available to outside programs (programs assembled separately) or

only to the program in which the data section is defined.

3. Assembly directives / pseudo-ops

Assembly Directives are instructions that are executed by the Assembler at assembly

time, not by the CPU at run time. They can make the assembly of the program dependent

on parameters input by the programmer, so that one program can be assembled different

ways, perhaps for different applications. They also can be used to manipulate

presentation of the program to make it easier for the programmer to read and maintain.

The names of pseudo-ops often start with a dot to distinguish them from machine

instructions.

Some assemblers also support pseudo-instructions, which generate two or more machine

instructions. Most assemblers provide flexible symbol management, allowing

programmers to manage different namespaces, automatically calculate offsets within data

structures, and assign labels that refer to literal values or the result of simple

computations performed by the assembler. Labels can also be used to initialize constants

and variables with replaceable addresses.

Assembly languages, like most other computer languages, allow comments to be added to

assembly source code that are ignored by the assembler. Good use of comments is even

http://en.wikipedia.org/wiki/Operands
http://en.wikipedia.org/wiki/Namespace_(computer_science)
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Source_code

ALP MICROPROCESSORS & INTERFACING

more important with assembly code than with higher-level languages, as the meaning and

purpose of a sequence of instructions is harder to decipher from the code itself.

Wise use of these facilities can greatly simplify the problems of coding and maintaining

low-level code. Raw assembly source code as generated by compilers or dis assemblers

— code without any comments, meaningful symbols, or data definitions — is quite

difficult to read when changes must be made.

PROGRAM CONTROL INSTRUCTIONS MICROPROCESSORS & INTERFACING

PROGRAM CONTROL INSTRUCTIONS

Program control instructions change or modify the flow of a program. The most basic

kind of program control is the unconditional branch or unconditional jump. Branch is

usually an indication of a short change relative to the current program counter. Jump is

usually an indication of a change in program counter that is not directly related to the

current program counter (such as a jump to an absolute memory location or a jump using

a dynamic or static table), and is often free of distance limits from the current program

counter.

The penultimate kind of program control is the conditional branch or conditional jump.

This gives computers their ability to make decisions and implement both loops and

algorithms beyond simple formulas.

Most computers have some kind of instructions for subroutine call and return from

subroutines.

There are often instructions for saving and restoring part or all of the processor state

before and after subroutine calls. Some kinds of subroutine or return instructions will

include some kinds of save and restore of the processor state.

Even if there are no explicit hardware instructions for subroutine calls and returns,

subroutines can be implemented using jumps (saving the return address in a register or

memory location for the return jump). Even if there is no hardware support for saving the

processor state as a group, most (if not all) of the processor state can be saved and

restored one item at a time.

NOP, or no operation, takes up the space of the smallest possible instruction and causes

no change in the processor state other than an advancement of the program counter and

any time related changes. It can be used to synchronize timing (at least crudely). It is

often used during development cycles to temporarily or permanently wipe out a series of

instructions without having to reassemble the surrounding code.

PROGRAM CONTROL INSTRUCTIONS MICROPROCESSORS & INTERFACING

Stop or halt instructions bring the processor to an orderly halt, remaining in an idle state

until restarted by interrupt, trace, reset, or external action.

Reset instructions reset the processor. This may include any or all of: setting registers to

an initial value, setting the program counter to a standard starting location (restarting the

computer), clearing or setting interrupts, and sending a reset signal to external devices.

 JMP Jump; Intel 80x86; unconditional jump (near [relative displacement from

PC] or far; direct or indirect [based on contents of general purpose register,

memory location, or indexed])

 JMP Jump; MIX; unconditional jump to location M; J-register loaded with the

address of the instruction which would have been next if the jump had not been

taken

 Jcc Jump Conditionally; Intel 80x86; conditional jump (near [relative

displacement from PC] or far; direct or indirect [based on contents of general

purpose register, memory location, or indexed]) based on a tested condition:

JA/JNBE, JAE/JNB, JB/JNAE, JBE/JNA, JC, JE/JZ, JNC, JNE/JNZ, JNP/JPO,

JP/JPE, JG/JNLE, JGE/JNL, JL/JNGE, JLE/JNG, JNO, JNS, JO, JS

 Jcc Jump on Condition; MIX; conditional jump to location M based on

comparison indicator; if jump occurs, J-register loaded with the address of the

instruction which would have been next if the jump had not been taken; JL (less),

JE (equal), JG (greater), JGE (greater-or-equal), JNE (unequal), JLE (less-or-

equal)

 LOOP Loop While ECX Not Zero; Intel 80x86; used to implement DO loops,

decrements the ECX or CX (count) register and then tests to see if it is zero, if the

ECX or CX register is zero then the program continues to the next instruction

(exiting the loop), otherwise the program makes a byte branch to continue the

loop; does not modify flags

 LOOPE Loop While Equal; Intel 80x86; used to implement DO loops, WHILE

loops, UNTIL loops, and similar constructs, decrements the ECX or CX (count)

register and then tests to see if it is zero, if the ECX or CX register is zero or the

Zero Flag is clear (zero) then the program continues to the next instruction (to exit

PROGRAM CONTROL INSTRUCTIONS MICROPROCESSORS & INTERFACING

the loop), otherwise the program makes a byte branch (to continue the loop);

equivalent to LOOPZ; does not modify flags

 LOOPNE Loop While Not Equal; Intel 80x86; used to implement DO loops,

WHILE loops, UNTIL loops, and similar constructs, decrements the ECX or CX

(count) register and then tests to see if it is zero, if the ECX or CX register is zero

or the Zero Flag is set (one) then the program continues to the next instruction (to

exit the loop), otherwise the program makes a byte branch (to continue the loop);

equivalent to LOOPNZ; does not modify flags

 LOOPNZ Loop While Not Zero; Intel 80x86; used to implement DO loops,

WHILE loops, UNTIL loops, and similar constructs, decrements the ECX or CX

(count) register and then tests to see if it is zero, if the ECX or CX register is zero

or the Zero Flag is set (one) then the program continues to the next instruction (to

exit the loop), otherwise the program makes a byte branch (to continue the loop);

equivalent to LOOPNE; does not modify flags

 LOOPZ Loop While Zero; Intel 80x86; used to implement DO loops, WHILE

loops, UNTIL loops, and similar constructs, decrements the ECX or CX (count)

register and then tests to see if it is zero, if the ECX or CX register is zero or the

Zero Flag is clear (zero) then the program continues to the next instruction (to exit

the loop), otherwise the program makes a byte branch (to continue the loop);

equivalent to LOOPE; does not modify flags

 JCXZ Jump if Count Register Zero; Intel 80x86; conditional jump if CX (count

register) is zero; used to prevent entering loop if the count register starts at zero;

does not modify flags

 JECXZ Jump if Extended Count Register Zero; Intel 80x86; conditional jump if

ECX (count register) is zero; used to prevent entering loop if the count register

starts at zero; does not modify flags

 CALL Call Procedure; Intel 80x86; pushes the address of the next instruction

following the subroutine call onto the system stack, decrements the system stack

pointer, and changes program flow to the address specified (near [relative

displacement from PC] or far; direct or indirect [based on contents of general

purpose register or memory location])

PROGRAM CONTROL INSTRUCTIONS MICROPROCESSORS & INTERFACING

 RET Return From Procedure; Intel 80x86; fetches the return address from the top

of the system stack, increments the system stack pointer, and changes program

flow to the return address; optional immediate operand added to the new top-of-

stack pointer, effectively removing any arguments that the calling program

pushed on the stack before the execution of the corresponding CALL instruction;

possible change to lesser privilege

 IRET Return From Interrupt; Intel 80x86; transfers the value at the top of the

system stack into the flags register, increments the system stack pointer, fetches

the return address from the top of the system stack, increments the system stack

pointer, and changes program flow to the return address; optional immediate

operand added to the new top-of-stack pointer, effectively removing any

arguments that the calling program pushed on the stack before the execution of

the corresponding CALL instruction; possible change to lesser privilege

 PUSHA Push All Registers; Intel 80x86; move contents all 16-bit general

purpose registers to memory pointed to by stack pointer (in the order AX, CX,

DX, BX, original SP, BP, SI, and DI); does not affect flags

 POPA Pop All Registers; Intel 80x86; move memory pointed to by stack pointer

to all 16-bit general purpose registers (except for SP); does not affect flags

 NOP No Operation; no change in processor state other than an advance of the

program counter

 HLT Halt; stop machine, computer restarts on next instruction

	Blank Page

